- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
14
- Author / Contributor
- Filter by Author / Creator
-
-
Gilray, Thomas (5)
-
Kumar, Sidharth (5)
-
Micinski, Kristopher (5)
-
Sun, Yihao (5)
-
Kunapaneni, Sowmith (1)
-
Sahebolamri, Arash (1)
-
Shovon, Ahmedur (1)
-
Shovon, Ahmedur Rahman (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Shovon, Ahmedur; Sun, Yihao; Gilray, Thomas; Kumar, Sidharth; Micinski, Kristopher (, ACM)Free, publicly-accessible full text available June 9, 2026
-
Sun, Yihao; Shovon, Ahmedur Rahman; Gilray, Thomas; Kumar, Sidharth; Micinski, Kristopher (, ACM)Modern Datalog engines (e.g., LogicBlox, Soufflé, ddlog) enable their users to write declarative queries which com- pute recursive deductions over extensional facts, leaving high-performance operationalization (query planning, semi- naïve evaluation, and parallelization) to the engine. Such engines form the backbone of modern high-throughput ap- plications in static analysis, network monitoring, and social- media mining. In this paper, we present a methodology for implementing a modern in-memory Datalog engine on data center GPUs, allowing us to achieve significant (up to 45×) gains compared to Soufflé (a modern CPU-based en- gine) on context-sensitive points-to analysis of PostgreSQL. We present GPUlog, a Datalog engine backend that imple- ments iterated relational algebra kernels over a novel range- indexed data structure we call the hash-indexed sorted ar- ray (HISA). HISA combines the algorithmic benefits of in- cremental range-indexed relations with the raw computa- tion throughput of operations over dense data structures. Our experiments show that GPUlog is significantly faster than CPU-based Datalog engines while achieving a favorable memory footprint compared to contemporary GPU-based joins.more » « lessFree, publicly-accessible full text available March 30, 2026
-
Sun, Yihao; Kumar, Sidharth; Gilray, Thomas; Micinski, Kristopher (, AAAI)Free, publicly-accessible full text available February 25, 2026
-
Sun, Yihao; Kumar, Sidharth; Gilray, Thomas; Micinski, Kristopher (, IEEE)
An official website of the United States government
